Copied to
clipboard

G = C62.13C32order 324 = 22·34

4th non-split extension by C62 of C32 acting via C32/C3=C3

metabelian, soluble, monomial

Aliases: C62.13C32, (C3×C9)⋊1A4, (C6×C18)⋊1C3, (C2×C6).1He3, C32⋊A4.1C3, C32.A41C3, C3.3(C32⋊A4), C32.10(C3×A4), C221(He3.C3), SmallGroup(324,49)

Series: Derived Chief Lower central Upper central

C1C62 — C62.13C32
C1C22C2×C6C62C32⋊A4 — C62.13C32
C22C2×C6C62 — C62.13C32
C1C3C32C3×C9

Generators and relations for C62.13C32
 G = < a,b,c,d | a6=b6=c3=1, d3=b2, ab=ba, cac-1=ab-1, ad=da, cbc-1=a3b4, bd=db, dcd-1=a2b4c >

3C2
3C3
36C3
3C6
3C6
3C6
3C6
3C9
12C32
12C9
12C9
3C2×C6
9A4
3C18
3C3×C6
3C18
3C18
43- 1+2
4He3
43- 1+2
3C3.A4
3C3×A4
3C2×C18
3C3.A4
3C3×C18
4He3.C3

Smallest permutation representation of C62.13C32
On 54 points
Generators in S54
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 19)(9 20)(10 49 16 46 13 52)(11 50 17 47 14 53)(12 51 18 48 15 54)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)
(1 7 4)(2 8 5)(3 9 6)(10 52 13 46 16 49)(11 53 14 47 17 50)(12 54 15 48 18 51)(19 25 22)(20 26 23)(21 27 24)(28 37 31 40 34 43)(29 38 32 41 35 44)(30 39 33 42 36 45)
(1 46 31)(2 53 32)(3 51 33)(4 49 34)(5 47 35)(6 54 36)(7 52 28)(8 50 29)(9 48 30)(10 43 21)(11 38 25)(12 42 20)(13 37 24)(14 41 19)(15 45 23)(16 40 27)(17 44 22)(18 39 26)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,19)(9,20)(10,49,16,46,13,52)(11,50,17,47,14,53)(12,51,18,48,15,54)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42), (1,7,4)(2,8,5)(3,9,6)(10,52,13,46,16,49)(11,53,14,47,17,50)(12,54,15,48,18,51)(19,25,22)(20,26,23)(21,27,24)(28,37,31,40,34,43)(29,38,32,41,35,44)(30,39,33,42,36,45), (1,46,31)(2,53,32)(3,51,33)(4,49,34)(5,47,35)(6,54,36)(7,52,28)(8,50,29)(9,48,30)(10,43,21)(11,38,25)(12,42,20)(13,37,24)(14,41,19)(15,45,23)(16,40,27)(17,44,22)(18,39,26), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,19)(9,20)(10,49,16,46,13,52)(11,50,17,47,14,53)(12,51,18,48,15,54)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42), (1,7,4)(2,8,5)(3,9,6)(10,52,13,46,16,49)(11,53,14,47,17,50)(12,54,15,48,18,51)(19,25,22)(20,26,23)(21,27,24)(28,37,31,40,34,43)(29,38,32,41,35,44)(30,39,33,42,36,45), (1,46,31)(2,53,32)(3,51,33)(4,49,34)(5,47,35)(6,54,36)(7,52,28)(8,50,29)(9,48,30)(10,43,21)(11,38,25)(12,42,20)(13,37,24)(14,41,19)(15,45,23)(16,40,27)(17,44,22)(18,39,26), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,19),(9,20),(10,49,16,46,13,52),(11,50,17,47,14,53),(12,51,18,48,15,54),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42)], [(1,7,4),(2,8,5),(3,9,6),(10,52,13,46,16,49),(11,53,14,47,17,50),(12,54,15,48,18,51),(19,25,22),(20,26,23),(21,27,24),(28,37,31,40,34,43),(29,38,32,41,35,44),(30,39,33,42,36,45)], [(1,46,31),(2,53,32),(3,51,33),(4,49,34),(5,47,35),(6,54,36),(7,52,28),(8,50,29),(9,48,30),(10,43,21),(11,38,25),(12,42,20),(13,37,24),(14,41,19),(15,45,23),(16,40,27),(17,44,22),(18,39,26)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)]])

44 conjugacy classes

class 1  2 3A3B3C3D3E3F6A···6H9A···9F9G9H9I9J18A···18R
order123333336···69···9999918···18
size13113336363···33···3363636363···3

44 irreducible representations

dim1111333333
type++
imageC1C3C3C3A4He3C3×A4He3.C3C32⋊A4C62.13C32
kernelC62.13C32C32.A4C32⋊A4C6×C18C3×C9C2×C6C32C22C3C1
# reps14221226618

Matrix representation of C62.13C32 in GL3(𝔽19) generated by

1800
070
008
,
700
0120
0012
,
010
001
100
,
1600
0160
005
G:=sub<GL(3,GF(19))| [18,0,0,0,7,0,0,0,8],[7,0,0,0,12,0,0,0,12],[0,0,1,1,0,0,0,1,0],[16,0,0,0,16,0,0,0,5] >;

C62.13C32 in GAP, Magma, Sage, TeX

C_6^2._{13}C_3^2
% in TeX

G:=Group("C6^2.13C3^2");
// GroupNames label

G:=SmallGroup(324,49);
// by ID

G=gap.SmallGroup(324,49);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,145,115,650,4864,8753]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^3=1,d^3=b^2,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,c*b*c^-1=a^3*b^4,b*d=d*b,d*c*d^-1=a^2*b^4*c>;
// generators/relations

Export

Subgroup lattice of C62.13C32 in TeX

׿
×
𝔽